en de
ADµP ®Developer Network for the economy.
Information, ideas, contacts and tasks to product developments particularly at the interface between information and energy technical systems. Examples for education and advanced training in neighbouring specific fields.

Search for im WEB auf ADµP


Reference of this page:   www.AD-P.net > Start page > Lists < Documents < Appendices < Free downloads & licensing < Related internet connections

Application Notes
[01]  [02]  [03]  [04]  [05]  [06]  [07]  [08]  [09] 

topic   Application Note 01 : ADµP in Synchronic-Mode (SM) for frequency transformation of narrow strips
Der ADµP® kann über die externen Verschaltung in verschiedenen Modi betrieben werden. Reference Mode (RM), Tandem Mode (TM) und YOU Mode (UM) werden in "Verfahren zur Periodendauer- und Wellenlängenmessung dominanter Schwingungen und Wellen sowie zur Spektralanalyse von Schwingungen und Wellen" und "Verfahren zum zeitnahen Ermitteln der Kennwerte, Harmonischen und Nichtharmonischen von schnell veränderlichen Signalen mit zusätzlicher Ausgabe davon abgeleiteter Muster, Steuersignale, Ereignisstempel für die Nachverarbeitung sowie einer Gewichtung der Ergebnisse" beschrieben.

topic   (01.01) Im Synchron Mode (SM) muss im Signalweg zum Eingang c.z ein Filter vorgesehen werden. Der Phasengang in Abhängigkeit von der Frequenz des Filters kann entsprechend Application Note 01 Appendix 01 ermittelt und als Tabelle aufbereitet werden.

Die Diagramme zeigen
1. Diagramm (oben):  Zeitverschiebung Dtf.VAL (rot) in s über der Frequenz u.c__f in Hz
2. Diagramm:            Signal s.VAL (rot) an den Eingängen u.c.y, u.c.z und v.c.y, sowie das gefilterte Signal s0.VAL (grün) an Eingang v.c.z über der Zeit t in s
3. Diagramm (mitte):  Signal s.VAL (rot) an den Eingängen u.c.y (grün) und v.c.y (blau), sowie die rücktransformierten Grundschwingungen an den Ausgängen u.c.y_1 (magenta) und v.c.y_1 (hell blau) über der Zeit t in s
4. Diagramm:            Frequenzen an den Ausgängen u.d.f (rot), u.c.f (grün), v.d.f (blau) und v.c.f (magenta), sowie die Vorgabe der Frequenz Bandwidth.VAL in Hz über der Zeit t in s
5. Diagramm (unten): Zeitverschiebung Dtf.VAL (grün) am Eingang v.c.Fx bei jeder Synchronisierung v.bj.synch für die Rücktransformation der Grundschwingung v.c.y_1, Zeitverschiebung Dtuv.VAL (rot) zu jedem Rechenschritt und zweifache Zeitverschiebung Dtuv_2.VAL (blau) zu jedem Rechenschritt über der Zeit t in s

topic   (01.02) Application Note 01 Appendix 02 : First test of time shift in lookup-table of Tschebyscheff-Filter 1st order
Application Note 01 Appendix 03 : Second test of time shift in lookup-table of Tschebyscheff-Filter 1st order
Application Note 01 Appendix 04 : Tschebyscheff-Filter 1st order and step of frequency fl --> fu
Application Note 01 Appendix 05 : Tschebyscheff-Filter 1st order and step of frequency fu --> fl
Application Note 01 Appendix 06 : Tschebyscheff-Filter 1st order and step of phase Phi_l --> Phi_u
Application Note 01 Appendix 07 : Third test of time shift in lookup-table of Tschebyscheff-Filter 1st order
Application Note 01 Appendix 08 : Fourth test of time shift in lookup-table of Tschebyscheff-Filter 1st order
Application Note 01 Appendix 09 : Preparation of Application Note #2 with Tschebyscheff-Filter 1st order


topic   Application Note 02 : Fast recognition of frequency with neurons
xxx

Application Note 02 Appendix 01a : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 1st order
Application Note 02 Appendix 01b : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 1st order
Application Note 02 Appendix 02a : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 2nd order
Application Note 02 Appendix 02b : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 2nd order
Application Note 02 Appendix 03a : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 3rd order
Application Note 02 Appendix 03b : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 3rd order
Application Note 02 Appendix 03c : Noise signal "LungSound" and synchronization over Tschebyscheff-Filter 3rd order
Application Note 02 Appendix 03d : Noise signal "LungSound" and synchronization over Tschebyscheff-Filter 3rd order
Application Note 02 Appendix 04a : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 4th order
Application Note 02 Appendix 04b : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 4th order
Application Note 02 Appendix 05a : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 5th order
Application Note 02 Appendix 05b : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 5th order
Application Note 02 Appendix 06a : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 6th order
Application Note 02 Appendix 06b : Voice signal "Kreis" and synchronization over Tschebyscheff-Filter 6th order


topic   Application Note 03 : Controlled oscillator for the synchronize-signal c.z
xxx

Application Note 03 Appendix 01 : Allocation of angle in matters of time at variable angular frequency
Application Note 03 Appendix 02 : Dropping of frequency c_f in Hz and left time point c_Fx in s
Application Note 03 Appendix 03 : Test of correctness of dropped frequency c_f in Hz
Application Note 03 Appendix 04 : Test of quest mode (QM) to dropped frequency in Hz
Application Note 03 Appendix 05 : Test of quest mode (QM) to ascended frequency in Hz
Application Note 03 Appendix 06 : Test of quest mode (QM) to recurring dropped frequency in Hz
Application Note 03 Appendix 07 : Test of quest mode (QM) to recurring ascended frequency in Hz
Application Note 03 Appendix 08 : Examination of negative phase error in quest mode (QM) to dropped frequency in Hz
Application Note 03 Appendix 09 : Examination of positive phase error in quest mode (QM) to dropped frequency in Hz
Application Note 03 Appendix 10 : Examination of negative phase error in quest mode (QM) to ascended frequency in Hz
Application Note 03 Appendix 11 : Examination of positive phase error in quest mode (QM) to ascended frequency in Hz


topic   Application Note 04 : Perception of phase shift between synchronize signal c.z and dominant vibration c.y_1
xxx

Application Note 04 Appendix 01 : Appraisal at 1% phase shift in quest mode (QM) to dropped frequency in Hz
Application Note 04 Appendix 02 : Appraisal at 5% phase shift in quest mode (QM) to dropped frequency in Hz
Application Note 04 Appendix 03 : Appraisal at 1% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 04 Appendix 04 : Appraisal at 5% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 04 Appendix 05 : Appraisal at 1% phase shift in quest mode (QM) to dropped frequency in Hz
Application Note 04 Appendix 06 : Appraisal at 5% phase shift in quest mode (QM) to dropped frequency in Hz


topic   Application Note 05 : Allocation and preparing of actual value to observe dominant vibration c.y_1
xxx

Application Note 05 Appendix 01 : Computation at 0 % phase shift in quest mode (QM) to dropped frequency in Hz
Application Note 05 Appendix 02 : Computation at +1% phase shift in quest mode (QM) to dropped frequency in Hz
Application Note 05 Appendix 03 : Computation at -1% phase shift in quest mode (QM) to dropped frequency in Hz
Application Note 05 Appendix 04 : Computation at +10% phase shift in quest mode (QM) to dropped frequency in Hz
Application Note 05 Appendix 05 : Computation at -10% phase shift in quest mode (QM) to dropped frequency in Hz
Application Note 05 Appendix 06 : Computation at +100% phase shift in quest mode (QM) to dropped frequency in Hz
Application Note 05 Appendix 07 : Computation at -100% phase shift in quest mode (QM) to dropped frequency in Hz
Application Note 05 Appendix 11 : Computation at 0 % phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 12 : Computation at +1% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 13 : Computation at -1% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 14 : Computation at +10% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 15 : Computation at -10% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 16 : Computation at +100% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 17 : Computation at -100% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 21 : Computation at 0 % phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 22 : Computation at +1% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 23 : Computation at -1% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 24 : Computation at +10% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 25 : Computation at -10% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 26 : Computation at +100% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 05 Appendix 27 : Computation at -100% phase shift in quest mode (QM) to ascended frequency in Hz


topic   Application Note 06 : Cybernetics to chase frequency of sinusoidal oscillation
xxx

Application Note 06 Appendix 01 : Preparation of frequency control F01 model at 0% phase shift in quest mode (QM) to ascended frequency in Hz
Application Note 06 Appendix 02 : Preparation of frequency control F01 model and separable control of quest mode (QM) at ascended frequency in Hz
Application Note 06 Appendix 03 : Find a instantaneous value near null to start frequency control F01 model at minimal ascended frequency in Hz

Application Note 06 Appendix 04a : Using start value TC_F01 := 49.443 ms to start model variant (a) of frequency control F01 at minimal ascended frequency in Hz
Application Note 06 Appendix 04b : Using start value TC_F01 := 49.443 ms to start model variant (b) of frequency control F01 at minimal ascended frequency in Hz
Application Note 06 Appendix 04c : Using start value TC_F01 := 49.443 ms to start model variant (c) of frequency control F01 at minimal ascended frequency in Hz
Application Note 06 Appendix 04d : Using start value TC_F01 := 49.443 ms to start model variant (d) of frequency control F01 at minimal ascended frequency in Hz

Application Note 06 Appendix 05a : Using start value TC_F01 := 49.443 ms to optimize model variant (a) of frequency control F01 at minimal ascended frequency in Hz
Application Note 06 Appendix 05b : Using start value TC_F01 := 49.443 ms to optimize model variant (b) of frequency control F01 at minimal ascended frequency in Hz
Application Note 06 Appendix 05c : Using start value TC_F01 := 49.443 ms to optimize model variant (c) of frequency control F01 at minimal ascended frequency in Hz
Application Note 06 Appendix 05d : Using start value TC_F01 := 49.443 ms to optimize model variant (d) of frequency control F01 at minimal ascended frequency in Hz

Application Note 06 Appendix 06 : Response frequency control F01 of step frequency at TC_F01 := 1 ms at minimal ascended frequency in Hz
Application Note 06 Appendix 07a : Comparison model variant (a) and (b) of frequency control F01 at ascended frequency in Hz
Application Note 06 Appendix 07b : Comparison model variant (a) and (b) of frequency control F01 at ascended frequency in Hz
Application Note 06 Appendix 08 : Response frequency control F01 of step frequency at TC_F01 := 1 ms at dropped frequency in Hz

Application Note 06 Appendix 09a : Adaptation of initial value at variant (a) ascended frequency
Application Note 06 Appendix 09b : Adaptation of initial value at variant (b) dropped frequency
Application Note 06 Appendix 09c : Adaptation of initial value at variant (c) ascended frequency df/dt = 64.22 Hz/s
Application Note 06 Appendix 09d : Adaptation of initial value at variant (d) dropped frequency df/dt = - 64.22 Hz/s
Application Note 06 Appendix 09e : Adaptation of initial value at variant (e) ascended frequency df/dt = 128.45 Hz/s
Application Note 06 Appendix 09f : Adaptation of initial value at variant (f) dropped frequency df/dt = -128.45 Hz/s
Application Note 06 Appendix 09g : Adaptation of initial value at variant (g) rapid ascended frequency df/dt = 321.1Hz/s
Application Note 06 Appendix 09h : Adaptation of initial value at variant (h) rapid dropped frequency df/dt = -321.1 Hz/s
Application Note 06 Appendix 09i : Adaptation of initial value at variant (i) rapid ascended frequency df/dt = 642.3 Hz/s
Application Note 06 Appendix 09j : Adaptation of initial value at variant (j) rapid dropped frequency df/dt = -642.3 Hz/s
Application Note 06 Appendix 09k : Adaptation of initial value at variant (k) rapid ascended frequency df/dt = 1285Hz/s
Application Note 06 Appendix 09l : Adaptation of initial value at variant (l) rapid dropped frequency df/dt = -1285 Hz/s
Application Note 06 Appendix 09m : Adaptation of initial value at variant (m) rapid ascended frequency df/dt = 3211Hz/s
Application Note 06 Appendix 09n : Adaptation of initial value at variant (n) rapid dropped frequency df/dt = -3211 Hz/s
Application Note 06 Appendix 09o : Adaptation of initial value at variant (o) very rapid dropped frequency df/dt = -6422 Hz/s

Application Note 06 Appendix 10a : Minimization of deviation as to monitoring item at challenge with triangle vibration df/dt = +/-256.9 Hz/s
Application Note 06 Appendix 10b : Minimization of deviation as to monitoring item at challenge with triangle vibration df/dt = +/-642,3 Hz/s
Application Note 06 Appendix 10c : Minimization of deviation as to monitoring item at challenge with triangle vibration df/dt = +/-1285 Hz/s


topic   Application Note 07 : Consideration of amplitude of sinusoidal oscillation for adaptation of observer
xxx

Application Note 07 Appendix 01 : Changed version #06 Appendix 10c with feedback of envelope m.y_mn of signal c.y
Application Note 07 Appendix 02 : Ascertain of start points for controller ktC_F01 and phase kphi.q01 of reference signal c.q01
Application Note 07 Appendix 03a (1.00) : Adjustment parameters at different envelope c.m = 1x and challenge triangle vibration df/dt = +/-1285 Hz/s
Application Note 07 Appendix 03a (1.05)
Application Note 07 Appendix 03a (1.10)
Application Note 07 Appendix 03a (1.20)
Application Note 07 Appendix 03a (1.50)
Application Note 07 Appendix 03a (2.00)
Application Note 07 Appendix 03a (5.00)
Application Note 07 Appendix 03a (10.0)
Application Note 07 Appendix 03a (0.95)
Application Note 07 Appendix 03a (0.90)
Application Note 07 Appendix 03a (0.80)
Application Note 07 Appendix 03a (0.50)
Application Note 07 Appendix 03a (0.20)
Application Note 07 Appendix 03a (0.10)

Application Note 07 Appendix 04 : Implementation of ADµP c1h01 FC v4.44 in model of Application Note #7
Application Note 07 Appendix 05 : Implementations for dynamical envelopes c.m = f(t)
Application Note 07 Appendix 06 (1.00) : Adapted controller parameters KP, KI and KD = f(t, f, c.m) in pu at 124 < f/Hz < 276 and c.m = 1x
Application Note 07 Appendix 06 (1.05)
Application Note 07 Appendix 06 (1.10)
Application Note 07 Appendix 06 (1.20)
Application Note 07 Appendix 06 (1.50)
Application Note 07 Appendix 06 (2.00)
Application Note 07 Appendix 06 (5.00)
Application Note 07 Appendix 06 (10.0)
Application Note 07 Appendix 06 (0.95)
Application Note 07 Appendix 06 (0.90)
Application Note 07 Appendix 06 (0.80)
Application Note 07 Appendix 06 (0.50)
Application Note 07 Appendix 06 (0.20)
Application Note 07 Appendix 06 (0.10)
Application Note 07 Appendix 06 (0.01)


topic   Application Note 08 : Changeover between T- and Q-Mode of ADµP and reaction to steps in frequency of signal c.y
xxx

Application Note 08 Appendix 01a : Example of Application Note #07 Appendix 06 with scaled feedback of envelope m.y_mn of signal c.y
Application Note 08 Appendix 01b : Appendix 01a but with two periods 2/tend of signal c.y
Application Note 08 Appendix 01c : Appendix 01a but with five periods 5/tend of signal c.y
Application Note 08 Appendix 01d : Appendix 01a but with ten periods 10/tend of signal c.y
Application Note 08 Appendix 02 : First test with modified sample “Kreis” - especially related at RMS = 1
Application Note 08 Appendix 03 : Test with modified sample “Kreis” for first adjustment controller input parameters (kV.CONST, T1.KP and Ds.KP)



topic   Application Note 09 : Separate of dominant vibration
xxx

Application Note 09 Appendix 01 : Example of Application Note #07 Appendix 06 with scaled feedback of envelope m.y_mn of signal c.y
Application Note 09 Appendix 02 : First test with modified sample “Kreis” - especially related at RMS = 1
Application Note 09 Appendix 03 : Test with modified sample “Kreis” for first adjustment controller input parameters (kV.CONST, T1.KP and Ds.KP)



topic   eMail forms
Made the contact easier by our forms for request. Please, use the following letters:

For contact with the editorial staff
For Suggestions and assessments send to the product development
For the order of the detailed text of an publication
As application for the membership / to the change of the member data

We look forward to your notes, your suggestion for an announcement in the context of the network, your cooperation or your sponsoring.

(Preparing of Messenger and .NET Passport)   (Online contacts)   (eMail contacts)   (FAQs)  
(Feedback form)   (Visitor's book)   (Visitor's book entry)   (Guide)   (Legal notice)

Christian E. Jacob